Gut Microbiome Restoration

Taking dysbiosis support to the next level using prebiotics & foods

THE FUNCTIONAL GUT HEALTH CLINIC

Outline of learnings, from me to you

- Gut microbiome restoration & the FDN approach
- Introduce the gut microbiome
- How to support gut microbiome diversity
- Introduce phyla of the human gut microbiome
- Gut microbiome testing using the GI MAP
- Microbiome restoration using prebiotics & foods:
 - 1. Proteobacteria & Bacteroidetes phyla
 - 2. Lactobacillus species
 - 3. Bifidobacteria species
 - 4. Akkermansia muciniphila
 - 5. Faecalibacterium prausnitzii

FDN Approach & Microbiome Restoration

Microbiome restoration & the FDN framework

- Plant foods & fibers for microbiome restoration can cause symptoms & make clients feel worse if we start them too early
- Test, don't guess to work out the best time to start microbiome restoration
- FDN framework:

 Microbiome restoration work can start when mycotoxin test, organic acids test, stool test &/or SIBO breath test are clear of gut infections

The Gut Microbiome

What is the gut microbiome?

- 100 trillion living microorganisms mostly located in the colon
- Microorganisms come from 1000+ different species & have a mutually beneficial relationship when in balance
- Dysbiosis within the gut microbiome can lead to symptoms & eventually disease states
- Your gut microbiome is unique to you:
 - 160 known species
 - 30-40 species make up most of our personal gut microbiome
 - Differences in species contribute to who we are & the functioning of our human cells

What does our gut microbiome do for us?

- Regulates gut motility
- Colonization resistance against pathogenic organisms
- SCFA production
- Improves nutrition status
- Weight management
- Managing our mood
- Blood glucose control & insulin sensitivity
- Promotes an anti or pro-Inflammatory state
- Xenobiotic & drug metabolism
- Immune system modulation

The Gut Microbiome

Gut Microbiome Diversity

Microbiome diversity - the key to health!

- The biggest driver of a healthy gut microbiome is **diversity**
- Aiming for ideal diversity levels of greater than the 90th percentile
- Lack of diversity in the gut microbiome is associated with:
 - Allergies
 - Asthma
 - Obesity
 - Insulin resistance
 - Dyslipidemia
 - Body-wide inflammation

Gut Microbiome Diversity

Factors that support gut microbiome diversity

- Diverse diet with a big variety of weekly plant-based foods (fruit, vegetables, legumes, nuts, seeds, herbs, spices, grains, pseudo-grains, etc)
- Prebiotic rich foods & supplements
- Natural birth or vaginal seeding
- Breastfeeding as a baby, especially within the first few days to help establish the gut microbiome
- Rural upbringing or urban upbringing with lots of time spent outside in natural environments

Restoring overall gut microbiome diversity

- Take **prebiotic supplements** daily (PHGG, Acacia, GOS, FOS, Lactulose, etc)
- Eat a wide variety of **multi-coloured plant foods** & plant fibers weekly
- Eat a variety of resistant starches, polyphenols, prebiotic-rich foods, prebiotic-like foods, pectins, soluble & insoluble fibers
- Aim for 40+ different plant foods each week (fruit, vegetables, legumes, nuts, seeds, herbs, spices, grains, pseudo-grains, etc)
- Organic gardening to grow some of your own food
- Eat **raw** fruits, vegetables, nuts & seeds for soil-based organisms
- Exercise moderately
- Probiotic supplements & fermented foods

Common causes of damage to the gut microbiome

- Medications: antibiotics, chemotherapy, radiation, PPI's, NSAID's
- Medical conditions caused by dysbiosis: allergies, asthma, obesity, insulin resistance, dyslipidemia, & body-wide inflammation
- Stress: long-term chronic stress or recent acute stress
- Dietary risk factors: low fiber/plant foods diet such as long-term use of Keto, low-FODMAP, high protein/fat & low carb diets; standard Western diet or diets low in plant food diversity

Gut Microbiome

Phyla

Phyla of the human gut microbiome

Phylum	Genus	Species
1. Firmicutes		
2. Bacteroidetes		
3. Proteobacteria		
4. Actinobacteria		
5. Verrucomicrobia		
6. Fusobacteria		
7. Euryarchaeota (archaea)		

Gut Microbiome Phyla

Genera of the human gut microbiome

Phylum	Genus	Species
1. Firmicutes	Faecalibacterium, Bacillus, Clostridium, Lactobacillus, Enterococcus, Staphylococcus, Streptococcus, Roseburia	
2. Bacteroidetes	Bacteroides, Prevotella, Alistipes	
3. Proteobacteria	Helicobacter, Escherichia, Pseudomonas, Klebsiella, Campylobacter, Salmonella, Oxalobacter, Desulfovibrio	
4. Actinobacteria	Bifidobacterium, Actinomyces	
5. Verrucomicrobia	Akkermansia	100 A 100
6. Fusobacteria	Fusobacterium	Calor Calor
7. Euryarchaeota (archaea)	Methanobrevibacter	

Gut Microbiome Phyla

Species of the human gut microbiome

Phylum	Genus	Species		
1. Firmicutes	Faecalibacterium, Bacillus, Clostridium, Lactobacillus, Enterococcus, Staphylococcus, Streptococcus, Roseburia	Faecalibacterium prausnitzii Lactobacillus plantarum		
2. Bacteroidetes	Bacteroides, Prevotella, Alistipes	Bacteroides fragilis		
3. Proteobacteria	Helicobacter, Escherichia, Pseudomonas, Klebsiella, Campylobacter, Salmonella, Oxalobacter, Desulfovibrio	Helicobacter pylori		
4. Actinobacteria	Bifidobacterium, Actinomyces	Bifidobacterium lactis		
5. Verrucomicrobia	Akkermansia	Akkermansia municiphila		
6. Fusobacteria	Fusobacterium	Fusobacterium nucleatum		
7. Euryarchaeota (archaea)	Methanobrevibacter	Methanobrevibacter smithii		

Gram-positive vs gram-negative phyla

Phylum	Genus	Species		
1. Firmicutes	Faecalibacterium, Bacillus, Clostridium, Lactobacillus, Enterococcus, Staphylococcus, Streptococcus, Roseburia	Faecalibacterium prausnitzii Lactobacillus plantarum		
2. Bacteroidetes	Bacteroides, Prevotella, Alistipes	Bacteroides fragilis		
3. Proteobacteria	Helicobacter pylori			
4. Actinobacteria	Bifidobacterium, Actinomyces	Bifidobacterium lactis		
5. Verrucomicrobia	Akkermansia	Akkermansia municiphila		
6. Fusobacteria	Fusobacterium	Fusobacterium nucleatum		
7. Euryarchaeota (archaea)	Methanobrevibacter	Methanobrevibacter smithii		

Gram-positive

Gram-negative

Gut Microbiome Phyla

Gram-negative bacteria & LPS

- Gram-negative bacteria contain LPS. LPS are endotoxins
- Endotoxins inside gram-negative bacterial cell membranes can be shed into the gut lumen of both the SI & LI when the bacteria dies
- Lots of LPS in the gut can lead to symptoms of endotoxemia: leaky gut, inflammation, mood changes – depression, anxiety, cognition changes brain fog, memory issues, fatigue
- Diets higher in fat like Keto, & other low-carb / high fat diets can increase LPS in the gut (LPS binds to dietary fats for absorption) & might not work for some clients when on bacteria eradication protocols that address gramnegative bacteria

Gut Microbiome

Testing

Microbiome testing: test don't guess!

- Labs that map the human gut microbiome: can be useful for detailed analysis, often don't share or report on the information we need
- **PCR/molecular testing:** decent lists of organisms, measure abundance & diversity, offer enough information to help our clients
 - Genova Diagnostics, GI Effects
 - Doctor's Data, GI 360
 - Vibrant Wellness, Gut Zoomer
 - Diagnostic Solutions Laboratory, GI MAP

GI MAP: Bacterial pathogens, page 1

PATHOGENS										
BACTERIAL PATHOGENS Phyla Result Reference										
Campylobacter	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
C. difficile Toxin A	Firmicutes	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
C. difficile Toxin B	Firmicutes	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
Enterohemorrhagic E. coli	Proteobacteria	2.14e3	High ↑	< 1.00e3						
E. coli O157	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
Enteroinvasive E. coli/Shigella	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
Enterotoxigenic E. coli LT/ST	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
Shiga-like Toxin <i>E. coli</i> stx1	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
Shiga-like Toxin <i>E. coli</i> stx2	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3						
Salmonella	Proteobacteria	<dl< td=""><td></td><td>< 1.00e4</td></dl<>		< 1.00e4						
Vibrio cholerae	Proteobacteria	<dl< td=""><td></td><td>< 1.00e5</td></dl<>		< 1.00e5						
Yersinia enterocolitica	Proteobacteria	<dl< td=""><td></td><td>< 1.00e5</td></dl<>		< 1.00e5						

GI MAP: Helicobacter pylori, page 2

HELICOBACTER PYLORI

_	H. PYLORI & VIRULENCE FACTORS	Phyla	Result		Reference
	Helicobacter pylori	Proteobacteria	1.59e3	High ↑	< 1.00e3
	Virulence Factor, babA		Negative		Negative
	Virulence Factor, cagA		Negative		Negative
	Virulence Factor, dupA		Negative		Negative
	Virulence Factor, iceA		Negative		Negative
	Virulence Factor, oipA		Negative		Negative
	Virulence Factor, vacA		Negative		Negative
	Virulence Factor, virB		Negative		Negative
	Virulence Factor, virD		Negative		Negative

GI MAP: Opportunistic/overgrowth microbes, page 3

OPPORTUNISTIC/OVERGROWTH MICROBES								
DYSBIOTIC & OVERGROWTH BACTERIA	Phyla	Result		Reference				
Bacillus spp.	Firmicutes	5.00e5		< 1.76e6				
Enterococcus faecalis	Firmicutes	<dl< td=""><td></td><td>< 1.00e4</td></dl<>		< 1.00e4				
Enterococcus faecium	Firmicutes	<dl< td=""><td></td><td>< 1.00e4</td></dl<>		< 1.00e4				
Morganella spp.	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3				
Pseudomonas spp.	Proteobacteria	6.65e6	High ↑	< 1.00e4				
Pseudomonas aeruginosa	Proteobacteria	2.58e4	High ↑	< 5.00e2				
Staphylococcus spp.	Firmicutes	<dl< td=""><td></td><td>< 1.00e4</td></dl<>		< 1.00e4				
Staphylococcus aureus	Firmicutes	4.35e3	High ↑	< 5.00e2				
Streptococcus spp.	Firmicutes	2.57e3	High ↑	< 1.00e3				
COMMENSAL OVERGROWTH MICROBES								
Desulfovibrio spp.	Proteobacteria	2.05e7		< 7.98e8				
Methanobacteriaceae (family)	Euryarchaeota	2.52e8		< 3.38e8				
INFLAMMATORY & AUTOIMMUNE-RELATED BACTE	RIA							
Citrobacter spp.	Proteobacteria	<dl< td=""><td></td><td>< 5.00e6</td></dl<>		< 5.00e6				
Citrobacter freundii	Proteobacteria	<dl< td=""><td></td><td>< 5.00e5</td></dl<>		< 5.00e5				
Klebsiella spp.	Proteobacteria	<dl< td=""><td></td><td>< 5.00e3</td></dl<>		< 5.00e3				
Klebsiella pneumoniae	Proteobacteria	<dl< td=""><td></td><td>< 5.00e4</td></dl<>		< 5.00e4				
M. avium subsp. paratuberculosis	Actinobacteria	<dl< td=""><td></td><td>< 5.00e3</td></dl<>		< 5.00e3				
Proteus spp.	Proteobacteria	<dl< td=""><td></td><td>< 5.00e4</td></dl<>		< 5.00e4				
Proteus mirabilis	Proteobacteria	<dl< td=""><td></td><td>< 1.00e3</td></dl<>		< 1.00e3				
COMMENSAL INFLAMMATORY & AUTOIMMUNE-RELATED BACTERIA								
Enterobacter spp.	Proteobacteria	2.78e6		< 5.00e7				
Escherichia spp.	Proteobacteria	9.64e7		< 3.80e9				
Fusobacterium spp.	Fusobacteria	1.58e5		< 1.00e8				
<i>Prevotella</i> spp.	Bacteroidetes	5.84e6		< 1.00e8				

Gut Health C

GI MAP: Commensal/keystone bacteria, page 2

COMMENSAL/KEYSTONE BACTERIA									
COMMENSAL BACTERIA	Phyla	Result		Reference					
Bacteroides fragilis	Bacteroidetes	1.21e9 L	•	1.6e9 - 2.5e11					
Bifidobacterium spp.	Actinobacteria	8.29e8	V	> 6.7e7					
Enterococcus spp.	Firmicutes	5.29e5	▼	1.9e5 - 2.0e8					
Escherichia spp.	Proteobacteria	7.73e4 L	▼	3.7e6 - 3.8e9					
Lactobacillus spp.	Firmicutes	2.09e6	▼	8.6e5 - 6.2e8					
Enterobacter spp.	Proteobacteria	1.56e6	V	1.0e6 - 5.0e7					
Akkermansia muciniphila	Verrucomicrobia	<dl l<="" td=""><td>▼</td><td>1.0e1 - 8.2e6</td></dl>	▼	1.0e1 - 8.2e6					
Faecalibacterium prausnitzii	Firmicutes	<dl l<="" td=""><td></td><td>1.0e3 - 5.0e8</td></dl>		1.0e3 - 5.0e8					
Roseburia spp.	Firmicutes	3.23e8	▼	5.0e7 - 2.0e10					
BACTERIAL PHYLA	BACTERIAL PHYLA								
Bacteroidetes	Bacteroidetes	3.67e11 L		8.6e11 - 3.3e12					
Firmicutes	Firmicutes	1.55e10 L	V	5.7e10 - 3.0e11					
Firmicutes:Bacteroidetes Ra	tio	0.04		< 1.0					

Microbiome restoration using prebiotics & foods

- 5 imbalances to address using prebiotics & foods:
 - Reduce gram-negative Proteobacteria phyla & balance gram-negative Bacteroidetes phyla
 - 2. Support Lactobacillus species
 - 3. Support Bifidobacterium species
 - 4. Support Akkermansia municiphila
 - 5. Support Faecalibacterium prausnitzii

Microbiome restoration using prebiotics & foods

		СОММЕ	NSAL/K	EYSTONE	BACTERIA	OPPORTU	OPPORTUNISTIC/OVERGROWTH MICROBES				
	COMMENSAL BACTERIA	Phyla	Result	:		Reference	DYSBIOTIC & OVERGROWTH BACTERIA	Phyla	Result	Reference	
	Bacteroides fragilis	Bacteroidetes	1.21e9 L	V		1.6e9 - 2.5e11	Bacillus spp.	Firmicutes	5.00e5	< 1.76e6	
							Enterococcus faecalis		<dl< th=""><th>< 1.00e4</th><th></th></dl<>	< 1.00e4	
3	<i>Bifidobacterium</i> spp.	Actinobacteria	8.29e8		V	> 6.7e7	Enterococcus faecium	Firmicutes	<dl< th=""><th>< 1.00e4</th><th></th></dl<>	< 1.00e4	
	Enterococcus spp.					1.9e5 - 2.0e8	<i>Morganella</i> spp.	Proteobacteria	<dl< td=""><td>< 1.00e3</td><td></td></dl<>	< 1.00e3	
							Pseudomonas spp.	Proteobacteria	6.65e6 Hig	j h ↑ < 1.00e4	1
	<i>Escherichia</i> spp.	Proteobacteria	7.73e4 L			3.7e6 - 3.8e9	Pseudomonas aeruginosa	Proteobacteria	2.58e4 Hig	j h ↑ < 5.00e2	
2	Lactobacillus spp.	Firmicutes	2.09e6			8.6e5 - 6.2e8	Staphylococcus spp.	Firmicutes	<dl< td=""><td>< 1.00e4</td><td></td></dl<>	< 1.00e4	
2							Staphylococcus aureus		4.35e3 Hig	j h ↑ < 5.00e2	
	Enterobacter spp.		1.56e6			1.0e6 - 5.0e7	Streptococcus spp.			j h	
4	Akkermansia muciniphila	Verrucomicrobia	<dl l<="" td=""><td>▼</td><td></td><td>1.0e1 - 8.2e6</td><td>COMMENSAL OVERGROWTH MICROBES</td><td></td><td></td><td></td><td></td></dl>	▼		1.0e1 - 8.2e6	COMMENSAL OVERGROWTH MICROBES				
-							Desulfovibrio spp.	Proteobacteria	2.05e7	< 7.98e8	1
5	Faecalibacterium prausnitzi	<i>i</i> Firmicutes	<dl l<="" td=""><td>▼</td><td></td><td>1.0e3 - 5.0e8</td><td>Methanobacteriaceae (family)</td><td>Euryarchaeota</td><td>2.52e8</td><td>< 3.38e8</td><td></td></dl>	▼		1.0e3 - 5.0e8	Methanobacteriaceae (family)	Euryarchaeota	2.52e8	< 3.38e8	
	<i>Roseburia</i> spp.				V	5.0e7 - 2.0e10	INFLAMMATORY & AUTOIMMUNE-RELATED BA	CTERIA			
							Citrobacter spp.	Proteobacteria	<dl< td=""><td>< 5.00e6</td><td></td></dl<>	< 5.00e6	
	BACTERIAL PHYLA						Citrobacter freundii	Proteobacteria	<dl< td=""><td>< 5.00e5</td><td>2.1</td></dl<>	< 5.00e5	2.1
1	Bacteroidetes	Pastaraidataa	3 67011 1	-		8 6 9 11 - 3 3 9 1 2	Klebsiella spp.	Proteobacteria	<dl< td=""><td>< 5.00e3</td><td></td></dl<>	< 5.00e3	
1	Dacteroideles	Bacteroidetes	0.0701112	•		0.0011 - 0.0012	Klebsiella pneumoniae	Proteobacteria	<dl< td=""><td>< 5.00e4</td><td>2</td></dl<>	< 5.00e4	2
	Firmicutes			V		5.7e10 - 3.0e11	M. avium subsp. paratuberculosis	Actinobacteria	<dl< td=""><td>< 5.00e3</td><td>~</td></dl<>	< 5.00e3	~
	Firmicutes:Bacteroidetes Ra	atio	0.04	W		< 1.0	Proteus spp.	Proteobacteria	<dl< td=""><td>< 5.00e4</td><td></td></dl<>	< 5.00e4	
				× ·		41.0	Proteus mirabilis	Proteobacteria	<dl< td=""><td>< 1.00e3</td><td>D)</td></dl<>	< 1.00e3	D)
							COMMENSAL INFLAMMATORY & AUTOIMMUNE	-RELATED BACTERIA			1
							Enterobacter spp.	Proteobacteria	2.78e6	< 5.00e7	
							Escherichia spp.	Proteobacteria	9.64e7	< 3.80e9	

linic

Prebiotics: a brief introduction

- **Prebiotics**: non-digestible foods that promote the growth of beneficial microorganisms in the gut (probiotics are live microorganisms)
- Best way to take prebiotics in therapeutic quantities is to supplement them
 - Take with meals: mixed into water directly before a meal or sprinkled onto a meal
 - Titrate slowly!
 - Supplement later in the day to avoid discomfort during waking hours
- Allow up to 3 months to titrate in full recommended doses of prebiotics
- It can take 6-12 months 2 years of prebiotic supplementation & diet diversity to eliminate the last of a client's lingering GI symptoms

1. Reduce Proteobacteria & balance Bacteroidetes

- Ideal levels: Bacteroidetes phyla: < 35%, Proteobacteria phyla: < 4%
- Improving the terrain of the gut microbiome rather than following a 'kill only' approach to balance these phyla
- This approach is not recommended to bring down lots of bacterial pathogens or lots of opportunistic or overgrowth bacteria. It is for balancing commensal bacteria & small populations of opportunistic or overgrowth bacteria on lab testing

- Galactooligosaccharides or GOS
 - All supplemental forms of GOS (that I know of) are dairy-derived
 - Not all clients are going to tolerate this prebiotic supplement due to dairy so you may need to focus on foods for this prebiotic
 - The recommended supplement dosing for GOS is 3 grams per day

- Galactooligosaccharides or GOS products:
 - Bimuno, Daily sachets: 1 sachet per day
 - Ariya Purity, GOS Powder: 3g per day
 - Klaire Labs, Galactomune Powder: blend of GOS (2.5g) & beta-glucans, 1 scoop per day
 - Microbiome Labs, MegaPre: 4g blend of GOS, FOS & XOS, 1-2 scoops per day

- Fructooligosaccharides or FOS
 - Derived from chicory root
 - Hardest prebiotic to tolerate, try to titrate FOS in last
 - FOS & inulin are different FOS has a shorter fermentation time so use this instead of inulin where possible
 - The recommended supplement dosing for FOS is 3 grams per day

- Fructooligosaccharides or FOS products:
 - Ariya Purity Synergy, Inulin/FOS Powder: 3g per day
 - Jarrow Formulas, Inulin/FOS Powder: 3g per day
 - Microbiome Labs, MegaPre: 4g blend of GOS, FOS & XOS, 1-2 scoops per day

Lactulose

- Derived from lactose, may not be tolerated by clients who have a dairy allergy or lactose intolerance
- Hard to source in the USA need a Doctor's prescription
- Acidifies the colon, makes it inhospitable for Proteobacteria
- Titrate very slowly!
- The recommended supplement dosing for Lactulose is 5mL per day

Lactulose products:

- USA/CAN: prescription only, check for fillers or added sugars, 5mL per day
- AUS/NZ: Actilax: 5mL per day
- UK/EU: Boots Lactulose: 5mL per day

Foods: Proteobacteria & Bacteroidetes

- High fiber, whole foods diet with prebiotic-rich foods:
 - **GOS:** legumes, brassica family vegetables, fresh beans, beets, sunflower seeds, pumpkin seeds & LSA mix
 - FOS: Jerusalem artichokes (sunchokes or sun artichokes), yacon tubers, burdock roots, chicory root, dandelion roots, garlic, onion, leek, asparagus & globe artichoke
- Decrease dietary fat intake for clients who are following a high-fat diet
 - Many Bacteroidetes & some Proteobacteria are bile acid consumers

2. Supporting Lactobacillus species

- Ideal levels: 0.01 1% (very small amount!)
- Lactobacillus strains important for vagina health 70-90% of the vaginal microbiome
- Benefits of Lactobacillus as a part of the gut microbiome: Colonization resistance against Proteobacteria, SCFA & lactate production, acidifies the colon, can produce GABA, supports the activity of many medicinal herbs, aids absorption of dietary polyphenols
- You can have too much lactobacillus but very rarely occurs. People who have a short bowel are at higher risk of negative consequences of high levels of lactobacillus in their gut (D-lactate acidosis)

Konjac glucomannan

- Derived from the root vegetable konjac
- Well tolerated prebiotic
- Best choice for feeding Lactobacillus species
- The recommended supplement dosing for Konjac glucomannan is 1.5 grams 3x per day

- Konjac glucomannan products:
 - Now Foods, Glucomannan powder or capsules: ¹/₂ tsp 3x daily or 3 caps 3x daily
 - Powdered product: take it with water since it can absorb up to 100x its own weight in liquid & can be hard to get down

Lactulose

- The recommended supplement dosing for Lactulose is 5 15+ mL per day
- Doses higher than 5mL may cause bloating, gas & stool changes
- Titrate very slowly!

Lactulose products:

- USA/CAN: prescription only, check for fillers or added sugars, 5-15mL per day
- AUS/NZ: Actilax: 5-15mL per day
- UK/EU: Boots Lactulose: 5-15mL per day

- Partially hydrolysed guar gum or PHGG
 - Derived from the guar bean
 - Most tolerated prebiotic overall
 - Best choice if you can't access konjac glucomannan or lactulose
 - The recommended supplement dosing for PHGG is 5 grams per day

- Partially hydrolysed guar gum or PHGG products:
 - BioMedica, GI Restore: contains PHGG (5g) & Acacia Fiber (2.5g), 7.5g per day
 - Tomorrow's Nutrition, Sun Fiber: 5g per day
 - Healthy Origins, Natural Healthy Fiber: 5g per day

Foods to restore Lactobacillus

- **Specific prebiotic-like & polyphenol-rich foods:** black currant powder, almonds, green tea & dark cacao powder
- **Konjac root:** contains konjac glucomannan. Whole konjac root or noodles/rice/pasta made from konjac
- **Fermented foods:** contain live lactobacillus species. Start with sauerkraut or other fermented vegetable juice & build up to a variety of fermented foods each week, including kimchi, kefir, kvass, tamari, miso & tempeh

3. Supporting Bifidobacteria species

- **Ideal levels:** > 2.5 5.0%
- Some species are fragile, can get extinct from poor diet or antibiotic use
- Benefits of Bifidobacteria as a part of the gut microbiome: Colonization resistance against Proteobacteria, acidifies the colon, supports the activity of medicinal herbs, aids absorption of dietary polyphenols, protects from & heals GI damage, modulates the immune system, protects from viral infections & helps produce B vitamins B1, 2, 3, 6, 7, 9 & 12
- Boosting levels of Bifidobacteria: decreases endotoxin levels, improves leaky gut, improves mood disorders, protective against insulin resistance, some strains can produce GABA

• Acacia Fiber

- Derived from acacia trees
- Well tolerated prebiotic
- Best choice for feeding Bifidobacteria species
- The recommended supplement dosing for acacia fiber is 10 grams per day

• Acacia Fiber products:

- Protocol for Life Balance, Organic Acacia Fiber powder: 10g per day
- Now Foods, Organic Acacia Fiber powder: 10g per day
- BioMedica, GI Restore: contains PHGG (5g) & Acacia Fiber (2.5g), 7.5g per day can be added to one of the above products if needing to supplement PHGG & Acacia

Lactulose

• The recommended supplement dosing for Lactulose is 5 mL per day

Lactulose products:

- USA/CAN: prescription only, check for fillers or added sugars, 5mL per day
- AUS/NZ: Actilax: 5mL per day
- UK/EU: Boots Lactulose: 5mL per day

• GOS & FOS

- The recommended supplement dosing for GOS is 3 grams per day
- The recommended supplement dosing for FOS is 3 grams per day

• GOS & FOS products:

- Microbiome Labs, MegaPre: 4g blend of GOS, FOS & XOS, 2 scoops / day
- Bimuno, Daily sachets (GOS): 1 sachet per day
- Ariya Purity, GOS Powder: 3g per day
- Klaire Labs, Galactomune Powder: GOS (2.5g) & beta-glucans, 1 scoop/day
- Ariya Purity Synergy or Jarrow Formulas, Inulin/FOS Powder: 3g per day

Foods to restore Bifidobacteria

- Wholefoods diet with lots of plant-foods & fiber: daily consumption of polyphenol-rich foods, prebiotic-rich foods & prebiotic-like foods
- Polyphenol-rich foods: dark black/blue fruits (elderberries, black currants, blueberries, cherry, strawberry, blackberry, plum, raspberry, red apple, black grapes), nuts & seeds (flax, chestnuts, hazelnuts, pecans, black tahini), vegetables (purple & red carrot, purple & red potato, red cabbage, spinach, red onion, broccoli, carrot, red lettuce), grains (red & black rice, red & black quinoa), black olives & olive oil

Foods to restore Bifidobacteria

Prebiotic-rich foods:

- **GOS:** legumes, brassica family vegetables, fresh beans, beets, sunflower seeds, pumpkin seeds & LSA mix
- FOS: Jerusalem artichokes (sunchokes or sun artichokes), yacon tubers, burdock roots, chicory root, dandelion roots, garlic, onion, leek, asparagus & globe artichoke
- Prebiotic-like foods: brown rice, carrots, black currants, dark cacao powder, almonds, green tea

4. Supporting Akkermansia muciniphila

- Ideal levels: 1 3%
- Gram-negative bacteria, supports the gut lining to maintain integrity by producing mucin & helps to metabolize excess mucin in the gut
- Benefits of Akkermansia as a part of the gut microbiome: supports metabolic health, blood sugar regulation, inflammation management & weight loss interventions. Associated with having a more diverse & healthy gut microbiome, low levels are associated with leaky gut
- Elevated Akkermansia: over 5 7% is a clue for severe inflammation & common to have mucus in the stool as a result. Akkermansia levels will normalize as inflammation & excess mucin levels go down

Prebiotics to restore Akkermansia

- Fructooligosaccharides or FOS
 - Best choice for feeding Akkermansia
 - The recommended supplement dosing for FOS is 3-6 grams per day
- Fructooligosaccharides or FOS products:
 - Ariya Purity Synergy, Inulin/FOS Powder: 3-6g per day
 - Jarrow Formulas, Inulin/FOS Powder: 3-6g per day
 - Microbiome Labs, MegaPre: 4g blend of GOS, FOS & XOS, 3 scoops per day – not the best choice

Prebiotics to restore Akkermansia

Lactulose

• The recommended supplement dosing for Lactulose is 5 mL per day

Lactulose products:

- USA/CAN: prescription only, check for fillers or added sugars, 5mL per day
- AUS/NZ: Actilax: 5mL per day
- UK/EU: Boots Lactulose: 5mL per day

Foods to restore Akkermansia

- Foods high in omega-3 fats: oily fish (salmon, mackerel, sardines, herring), cod liver or fish oil, flax seeds or oil, chia seeds, walnuts
- Fasting: for 12+ hours can help to boost populations
- **Red polyphenol-rich foods:** red rice, red quinoa, cranberry, red apple skin, red grapes, lingonberries, pomegranate & red dragon fruit
- Other options since Akkermansia can be hard to support:
 - Pendulum, Akkermansia probiotic supplement: 1 capsule 2x daily
 - If populations don't recover after 1-2 years of prebiotics & foods, consider FMT (fecal microbial transplantation)

5. Supporting Faecalibacterium prausnitzii

- **Ideal levels:** 10 15% & up to 25%
- Most abundant bacteria in the gut & the biggest butyrate producer
- Considered important indicator for overall gut health, higher levels indicates a more diverse & healthy gut microbiome
- Benefits of Faecalibacterium as a part of the gut microbiome: produces butyrate, supports gut lining integrity, anti-inflammatory support, reduces risk of GI conditions & cancers, improves insulin sensitivity, can help with sleep & mood
- Can be killed off by chemotherapy, Chron's & Coeliac disease. GF & low-FODMAP diets can significantly reduce numbers

Prebiotics to restore Faecalibacterium

- Fructooligosaccharides or FOS
 - Best choice for restoring Faecalibacterium
 - The recommended supplement dosing for FOS is 3-6 grams per day
 - 10 grams per day recommended in the literature but not well tolerated
- Fructooligosaccharides or FOS products:
 - Ariya Purity Synergy, Inulin/FOS Powder: 3-6g per day
 - Jarrow Formulas, Inulin/FOS Powder: 3-6g per day
 - Microbiome Labs, MegaPre: 4g blend of GOS, FOS & XOS, 3 scoops per day – not the best choice

Prebiotics to restore Faecalibacterium

- Galactooligosaccharides or GOS
 - All supplemental forms of GOS (that I know of) are dairy-derived
 - The recommended supplement dosing for GOS is 3 grams per day
- Galactooligosaccharides or GOS products:
 - Bimuno, Daily sachets: 1 sachet per day
 - Ariya Purity, GOS Powder: 3g per day
 - Klaire Labs, Galactomune Powder: blend of GOS (2.5g) & beta-glucans, 1 scoop per day
 - Microbiome Labs, MegaPre: 4g blend of GOS, FOS & XOS, 1-2 scoops / day

Prebiotics to restore Faecalibacterium

Lactulose

• The recommended supplement dosing for Lactulose is 5 mL per day

Lactulose products:

- USA/CAN: prescription only, check for fillers or added sugars, 5mL per day
- AUS/NZ: Actilax: 5mL per day
- UK/EU: Boots Lactulose: 5mL per day

Foods to restore Faecalibacterium

• Prebiotic-rich foods:

- **GOS:** legumes, brassica family vegetables, fresh beans, beets, sunflower seeds, pumpkin seeds & LSA mix
- FOS: Jerusalem artichokes (sunchokes or sun artichokes), yacon tubers, burdock roots, chicory root, dandelion roots, garlic, onion, leek, asparagus & globe artichoke
- Apple pectin: red or green apples, pectin comes from the pulp (or apple pectin powder as a supplement)
- Starches in general: starchy vegetables, legumes, grains
- Grape polyphenols: higher quantities in red grapes, including red wine

Final thoughts...

- Long-term use of prebiotics & a diverse diet (1-2 years) consistently shows gut microbiome diversity being greatly improved & correlates with overall improvements in both gut & general health markers
- If you want to learn more: I mentor practitioners who want to upskill in SIBO & microbiome restoration work. If you want to learn more you can review my website: <u>https://bellalindemann.com/practitioner-education</u>

Final thoughts

• Questions, thoughts or feedback?

Contact me:

Bella Lindemann

hello@bellalindemann.com

www.bellalindemann.com